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ABSTRACT 

This paper showcases some of the newly introduced parallel 

execution methods in Oracle RDBMS. These methods provide 

highly scalable and adaptive evaluation for the most commonly 

used SQL operations – joins, group-by, rollup/cube, grouping 

sets, and window functions. The novelty of these techniques is 

their use of multi-stage parallelization models, accommodation of 

optimizer mistakes, and the runtime parallelization and data 

distribution decisions. These parallel plans adapt based on the 

statistics gathered on the real data at query execution time. We 

realized enormous performance gains from these adaptive 

parallelization techniques. The paper also discusses our approach 

to parallelize queries with operations that are inherently serial. We 

believe all these techniques will make their way into big data 

analytics and other massively parallel database systems.    

1. INTRODUCTION 
Parallel execution is the crux of commercial relational database 

systems, database appliances and Hadoop systems in processing 

huge volumes of data. While relational database systems and 

appliances parallelize execution of SQL statements, Hadoop 

systems parallelize computations specified as map/reduce jobs, 

and the line is getting blurred by the day. For example, Hive 

provides SQL interface to the data sitting in a HDFS; Polybase 

claims to move the data from HDFS to the SQL engine, or the 

computation (map/reduce job) to Hadoop. Whatever the approach 

may be, analyzing the vast amounts of data being collected by 

companies nowadays calls for massively scalable and adaptive 

parallel execution models. The parallelization models should fully 

leverage CPU resources, minimize data transmission overheads, 

and adapt based on the characteristics of the data.   

We targeted the heavily used SQL operators for data analysis – 

joins, aggregations (group-by, rollup, cube, grouping sets), and 

analytic window functions, and developed scalable parallel 

execution models for them. These operators play a predominant 

role in customer workloads, TPC-H and TPC-DS [5] benchmarks, 

and are commonplace in data mining and graph processing using 

RDBMSs. The paper is organized like this – in the rest of this 

section, we briefly introduce SQL analytics and parallel execution 

in Oracle; Sections 2 and 3 present our adaptive techniques for 

scaling the computation of group-by and its variants. Techniques 

for massively scaling analytic window functions are presented in 

Section 4. In Sections 5 and 6, we describe adaptive distribution 

methods and massive parallelization of joins. Section 7 shows 

ways to parallelize queries with operations that are inherently 

serial. Performance results are presented in Section 8. We discuss 

related work in Section 9 and conclude in Section 10. 

1.1 SQL Analytics 
Data cube [14] computation is an expensive and critical operation 

in the Data Warehouse environments. To facilitate efficient 

execution, SQL Group-By clause was extended with ROLLUP, 

CUBE and GROUPING SETS [4] allowing one to specify 

aggregations at different levels in a single query block. ROLLUP 

aggregates (or rolls up) data at successively higher levels – 

ROLLUP (year, quarter, month) computes aggregations at (year, 

quarter, month), (year, quarter), (year), and (<grand-total>) 

levels. CUBE, on the other hand, aggregates the data on all level 

combinations – CUBE (region, year) aggregates on (region, 

year), (region), (year) and (<grand-total>) levels. GROUPING 

SETS syntax allows users to aggregate the data on arbitrary levels.  

These operations attracted research [7][15] by the database 

community in late 90’s and execution schemes were proposed. 

Commercial database systems have been supporting these 

operations since then. Oracle RDBMS uses sort-based execution 

scheme for ROLLUP.  Data is sorted and aggregated on all the 

group-by keys, and higher aggregation levels are computed as the 

data is read in sorted order – for example, (year, quarter), (year), 

and (<grand-total>) levels are computed as aggregated data at 

(year, quarter, month) level is read in sorted order. CUBE and 

Grouping Sets are evaluated by reducing them into one or more 

ROLLUPs.  

Window functions, a part of SQL 2003 [3] standards, enriched 

SQL with analytic capabilities and have been widely adopted by 

the user community. Analytic queries expressed with window 

functions are not only elegant in expression, but execute very well 

as numerous self-joins and multiple query blocks are avoided. 

Oracle RDBMS supported window functions since Oracle 8i. In 

the simplest form, the syntax of window functions looks like this: 

  Window_Function ( [ arguments ] ) OVER ( 
    [ PARTITION BY pk1 [ , pk2, ... ] ] 

[ ORDER BY ok1 [ , ok2, ... ]   [ WINDOW  clause ] ] )    

Window functions are evaluated on a per partition basis – data is 

partitioned using the PARTITION BY keys and rows within each 

partition are ordered on the ORDER BY keys. Then for each row, 
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the WINDOW clause establishes the window (the start and the 

end boundary) on which a SQL aggregate function like sum, 

count, or a ranking function like rank, row_number, or a reference 

function like nth_value, lag is applied to produce the result.  

Window functions are evaluated after joins, group-by, and the 

HAVING clause of the query block. There can be multiple 

window functions in a query block, each with different partition-

by, order-by, and WINDOW specifications. Oracle RDBMS 

employs sort-based execution of window functions, and this 

appears as “window sort” operator in the query tree. Our query 

optimizer tries to minimize the number of window sort operations 

needed to evaluate the set of window functions specified in the 

query. One or more passes over the sorted data will be needed to 

evaluate the window functions within a window sort operator. 

Three subclasses of window functions – reporting, cumulative, 

and ranking, are quite ubiquitous in users’ queries. They are also 

employed by database query optimizers [2][9] to remove self-

joins and multiple query blocks. Our novel techniques massively 

parallelize these important classes of window functions. 

1.2 Parallel Execution in Oracle 
Parallel execution in Oracle RDBMS is based on producer-

consumer model in which one set of parallel processes produces 

the data, while the other set consumes it. Producer and the 

consumer sets have same number of processes and this number 

forms the “degree of parallelism” (DOP) of the statement. There 

is a Query Coordinator (QC) process overseeing the parallel 

execution of the statement. The QC mostly does logistical work – 

compilation of the SQL statement, distribution of the work among 

parallel processes, shipping the results back to the user, and is 

overloaded to perform computations that are not parallelizable.  

The QC groups various operations (table scan, joins, aggregations 

etc) performed in a sequence into a logical entity called the “Data 

Flow Operation” (DFO). It schedules the execution of the DFOs 

by the two sets of parallel processes. Data redistribution takes 

place between producers and consumers, and this happens via 

shared-memory in the case of single-instance database, or via a 

network for multi-instance Oracle Real Application Clusters 

database. The data distribution can be broadcast, hash or range on 

keys, or random and is determined based on the characteristics of 

the consuming DFO. Typically, the data distribution type and 

keys are determined during the compilation of the parallel 

statement. Once all the producer processes finish executing the 

DFO and distributing data to consumers, role reversal occurs – 

QC assigns the next DFO in sequence to the erstwhile producer 

processes, which now become the consumers; the previously 

consuming parallel processes now start producing data. In this 

paper, we show DFOs using ovals and the arrows between DFOs 

depict the data redistribution. 

1.3 Terminology 
The following acronyms are frequently used in this paper: 

GBY – Group By DOP – Degree of Parallelism 

OBY – Order By DFO – Data Flow Operation 

PBY – Partition By GPD – GBY Pushdown 

QC – Query Coordinator HBF – Hybrid Batch Flushing 

NDV – Number of Distinct Values 

2. GROUP-BY  
Group-by Pushdown (GPD) is a well-known technique for GBY 

parallelization, wherein the data is aggregated before being 

distributed on the GBY keys for final aggregation. GPD plan 

(shown in Figure 1) scales well, reduces data distribution costs, 

and handles skew. However, it comes with the added CPU and IO 

costs of performing aggregation one extra time (that is at the data 

production side) and can have an inferior performance when the 

reduction in the data due to aggregation is low. Due to this benefit 

vs. risk trade off, Oracle RDBMS has been using a cost-based 

approach and some heuristics for GBY parallelization.  

Oracle query optimizer uses estimates of the number of rows and 

groups in choosing the GPD plan. As IO overheads are typically 

much higher, Oracle uses a heuristic of not spilling to disk at the 

producer side. When a producer process performing GBY runs 

out of memory, it switches itself off, outputs whatever data it has 

aggregated thus far, and becomes a pass-through operation.  

There were several problems with our existing approach – 

optimizer dependency, untimely shut-off of GPD, and the inability 

to handle skew. Due to inaccurate optimizer estimates, we weren’t 

choosing GPD plan in cases where it would have been ideal. Our 

heuristic of stopping aggregation upon running out of memory 

worked well for systems with limited memory and concurrency 

support. But for newer generation systems that can support heavy 

query bursts and can operate almost in-memory, our heuristic 

needed to be revisited. Because of high memory availability, we 

might not hit the memory-full criterion and would continue to do 

GPD even though it is detrimental. In the other extreme, memory 

pressure due to sudden query burst can lead to early shut-off of 

GPD even though GPD is beneficial. In the former case, we waste 

CPU resources and in the latter, we incur a lot of row distribution 

overhead. Skew exacerbates the problem further due to low 

effective degree of parallelism and the load imbalances.  

We made several changes to our GBY parallelization scheme to 

fix the above-mentioned issues, making it massively scalable and 

adaptable based on data characteristics. It also incurs low CPU 

overhead. In the new parallelization model, GPD plan is picked 

irrespective of optimizer estimates, thereby eliminating the 

catastrophic scenario (i.e., limited scalability in the presence of 

skew). We then made GPD operation adaptive (or become pass-

through) based on the statistics (number of input records and 

number of groups) gathered at execution time, rather than on the 

“memory-full” heuristic. And unlike the current scheme, we 

Figure 1. Parallel GroupBy Pushdown 
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continue pushdown aggregation if it is found to be effective (1/3rd, 

or by a configurable ratio) in reducing the data. When memory 

capacity is reached, two possibilities exist for GBY to free up 

memory – spill the data to disk, or send it over the network to the 

consuming parallel processes (c1, …, cn of Figure 1) that complete 

the GBY processing. The former approach, though spills to disk, 

handles skew and transmits the least amount of data over the 

network. The latter approach, which we call “Batch Flushing” 

(BF), flushes the batch of rows aggregated thus far, rebuilds a new 

batch, and repeats the process. BF avoids spilling to disk at the 

expense of transmitting more rows over the network. It handles 

skew well provided enough memory is available for aggregation.  

To handle high throughput scenarios, we employ a strategy that is 

a hybrid of the two described above, and we call it “Hybrid Batch 

Flushing” (HBF). In HBF, instead of flushing the batch right 

away, we use it to aggregate the incoming records. We probe an 

incoming record against the batch and if we find a match, we 

aggregate; otherwise we send the record over the network. While 

doing this, we maintain the efficiency of the batch. When we find 

that the current batch is not effective in aggregating the data, we 

flush it to the network, rebuild a new batch and repeat the process. 

Additionally, we may choose to keep the most frequent records in 

the batch. HBF betters BF in reducing network traffic when 

memory is limited due to heavy workload. HBF adapts well to the 

memory fluctuations – especially, when memory usage by GBY 

has to be brought down due to a sudden query burst. In such 

cases, HBF keeps the most-frequent groups in memory and 

flushes the rest to network.  

Another aspect to consider is the timing of the “adaptive” 

decision. Making the decision at the time of spill, as we do today, 

will not be performant for queries with low or no reduction, and 

in-memory aggregation. In this case, we effectively consume 

twice the CPU for the GBY (hash or sort based) operation. If the 

decision is made too early, we might make a bad decision due to 

insufficient sample. Our approach is to make the decision when 

data exceeds L2 cache size, or a multiple of it. If we find that the 

reduction is good, we try to give more memory to the GBY 

operation. If not, we enter HBF mode. Having a batch that is L2 

resident will not add too much performance penalty, especially 

when the expensive hash value computation (for group-by hash) is 

shared across several operations. If we don’t encounter an 

effective batch even after trying several times, we enter “pass-

through” mode that transmits rows as they are received. As 

presented in Section 8.1, our HBF strategy gave significant 

performance gains over the current GBY parallelization.   

3. ROLLUP 
Rollup operation aggregates the data at successively higher levels 

and is most commonly applied along a dimensional hierarchy. 

Users typically rollup the data on one dimension, keeping other 

dimensions at a particular level – e.g. query Q1 rolls up on time 

dimension, keeping geography dimension at country level; it 

computes SUM(sales) for (c, y,q, m), (c, y, q), (c, y) and (c) levels. 

Currently, Oracle RDBMS parallelizes such queries in two ways, 

but both the approaches have pitfalls. The first approach, as 

shown in Figure 2, parallelizes by distributing the data on non-

rollup keys (country for Q1). This scheme works well when the 

number of distinct values (NDV) of the non-rollup keys is more 

than the degree of parallelism (DOP), and there is no/little skew in 

the distribution keys. Otherwise, performance will be very poor 

due CPU underutilization. 

Q1 SELECT country AS c, year AS y, 
     quarter AS q, month AS m, SUM(sales)  
   FROM time_dim t, geog_dim g, fact f 
   WHERE t.time_key = f.time_key AND 
         g.geog_key = f.geog_key 
   GROUP BY country, 
            ROLLUP(year, quarter, month); 

The second approach tries to mitigate the scalability and skew 

issues by computing ROLLUP in two stages, as shown in Figure 

3. In the “ROLLUP” stage, each parallel process aggregates the 

local data and rolls it up. Rows produced by this stage are at 

multiple levels and are distinguished with a grouping identifier 

(grouping_id function). They are distributed (hash or range) to the 

second stage on GBY keys and the grouping_id. The second stage 

performs vanilla group-by operation based on all the GBY keys 

and the grouping_id. 

This parallel execution plan shows better scalability and 

performance – skew in the data is handled by the “ROLLUP” 

stage via aggregation; and enough keys are used to distribute work 

evenly among parallel processes. However, it falls short when 

data is sparse, or limited memory is available for the rollup stage. 

Sparse data [6] is not so uncommon in the real world and as 

ROLLUP is done before the data distribution, huge explosion in 

the data traffic can happen. For example, peak holiday sales occur 

during different months (and say, quarters) in different countries. 

So the ROLLUP of query Q1 would produce one row at (year, 

quarter, month) level and one at (year, quarter) level for every 

base level (year, quarter, month, country) row. When there is not 

enough memory for the ROLLUP operation, we either have to 

stop aggregation (like the adaptive group-by of Section 2), or spill 

the data to disk. The former is like the “sparse data” case in that it 

explodes the data – 4 rows produced for each input row to the 

query Q2. The latter case is less performant as it might spill the 

data to disk twice – once each in ROLLUP and GBY stages.  

Figure 3. Rollup Pushdown Parallel Plan 

Figure 2. Single Stage (Non-Pushdown) Parallel Plan 

 

ROLLUP 
 

Joins 

Group By 

                      hash on        all keys   
                                         [country, year, quarter, month] 

   

Joins   

   hash on            non - rollup keys    
                           [country]   

ROLLUP   

1104



 

 

Our new ROLLUP parallelization scheme, shown in Figure 4, 

overcomes the scalability issues of the above-described 

parallelization models. It employs two stages namely “Rollup 

Distributor” (RD) and “Rollup Collector” (RC) and is adaptive. It 

makes several decisions at query execution time based on the 

statistics gathered on the real data. It decides the data distribution 

keys, whether to aggregate at the base level or now, and the 

aggregation levels to be computed in the RD vs. the RC during 

the query execution. Thus, it is immune to optimizer errors and 

scales massively.  

To save space, we use the first letter of the column (c for country, 

y for year, q for quarter, and m for month) in the following 

description. Adaptive group-by operation (as described in Section 

2) aggregates data at the base level and if it finds that there is no 

reduction due to group-by, it becomes a pass-through operation. 

RD performs several actions in the following sequence. Example 

query Q1 specific information is given in square brackets: 

1. Buffers incoming rows and collects the NDV of potential 

distribution keys [ (c,y,q,m), (c,y,q), (c,y), and (c) ]. 

2. Upon finding a candidate distribution key with NDV >> 

DOP, it informs the Query Coordinator (QC) of its decision 

[say (c, y, q) is the candidate distribution key]. Note that this 

is a local decision made by a parallel process.  

3. QC informs RD of the global choice for the distribution key 

[say (c,y,q)]. QC makes this decision based on the local (and 

potentially different) choices made by various RD processes. 

The distribution key implicitly determines the levels RD 

would be computing.  

4. RD now knows the ROLLUP levels it has to compute [(c,y) 

and (c)]. It first processes rows from the buffer – each row 

would be inserted into an access structure (sort/hash) for 

aggregation [on (c,y) level], and would also distributed to a 

corresponding RC process based on the global distribution 

key [(c,y,q)]. Rows distributed to the RC are tagged with a 

bit indicating that these are “base” rows. 

5. RD then reads the remaining rows from input source and 

processes them like in step 4.  

6. Once input is exhausted, RD would roll the data up [level 

(c)] and distributes it to the RC. Rows distributed in this step 

do not have the “base” row tag. 

Parallel processes performing the RC step get informed by the QC 

of the ROLLUP levels they are supposed to compute [(c,y,q,m) 

and (c,y,q)]. RC aggregates data on those levels for “base” rows. 

Rows not marked as “base” are vanilla aggregated on GBY keys 

and the grouping_id [(c, y, q, m), grouping_id(y, q, m)].  In the 

example scenario, non-base rows at level (c,y) have NULL value 

for q and m columns, and NULLs for y, q, and m for rows at (c) 

level. Grouping_Id is needed to distinguish these NULLs 

generated by the rollup operation from the NULLs in the real 

data. Essentially, our new plan is an amalgamation of two 

independent (pushdown and non-pushdown) plans shown below:   

The new ROLLUP parallelization model has yielded significant 

(up to 25x) performance gains as it leveraged all the CPU 

resources. As CUBE and GROUPING SETS are evaluated by 

decomposition into a series of rollups [7], they too become 

massively scalable.    

4. WINDOW FUNCTIONS 
In this section, we describe our novel adaptive parallel execution 

models for the three most popular classes of window functions – 

reporting, ranking and cumulative window functions. Reporting 

window functions (also called reporting aggregates) report the 

partition-level aggregate value for each row in the partition. This 

is so because the window for each row spans the entire partition. 

They are often used for comparative analysis – e.g. compare each 

day’s (base rows) sale to the yearly sales obtained using 

“sum(sales) over (partition by year)”.  

Cumulative window functions, as suggested by their name, 

produce “year-to-date” style aggregations. Unlike reporting 

aggregates that have a fixed window (that is an entire partition) 

for each row, cumulative functions have a window that grows, 

albeit in one direction. For each row in a partition, the window 

extends from the first row in the partition to the current row, and 

an aggregate is applied on the window. For example, a window 

function “max(price) over (partition by stock, year order by 
date rows between unbounded preceding and current row)” 

computes the year-to-date maximum price of a stock.  

Ranking function is a special case of cumulative function in that 

the aggregate applied on the window is not a typical SQL 

aggregate (like sum, count), but a ranking function – row_number, 

rank, dense_rank etc. For example, “rank() over (partition by 
department order by sales desc)” is useful in finding top sales in 

each department. For convenience, we use short cuts PBY and 

OBY for “PARTITION BY” and “ORDER BY” respectively.  

4.1 Reporting Window Functions 
Reporting window functions are used in computing the aggregates 

at successively higher hierarchical levels for comparative analysis. 

Figure 4. Adaptive Rollup Parallelization 
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Consider this common data warehouse query for example: 

Q2 SELECT /*y:year q:quarter m:month d:day*/ 
     y, q, m, d, sales,  
     SUM(sales) OVER (PBY y,q,m) msales,  
     SUM(sales) OVER (PBY y,q) qsales,    
     SUM(sales) OVER (PBY y) ysales 
   FROM fact f; 

As mentioned in Section 1.1, Oracle RDBMS uses sort-based 

execution of window functions and evaluates the three reporting 

aggregates in Q2 using a single “window sort” operation. Because 

of this clumping, the parallel plan requires data redistribution 

(hash or range) on the common PBY key. Figure 5 shows the 

parallel plan for query Q2, wherein the data distribution is done 

by “hash” on the common PBY key “year”.  

This parallel execution plan works well when the number of 

partitions created by the common PBY key is equal to or greater 

than the system supported degree of parallelism (DOP). 

Otherwise, it fails to leverage system resources fully and executes 

very poorly. The scaling of this parallel plan depends on the 

number of distinct values (NDV) of the PBY keys. For example, 

if “year” had only 10 distinct values, the plan cannot use more 

than 10 parallel processes. Thus, this model is ill suited for big 

data systems and database appliances that have lots of processing 

power. So to make the window function computation massively 

parallelizable, we use extended data redistribution keys, or 

employ window pushdown. Both these techniques split the 

window function computation into two stages. 

With “extended distribution keys”, we use more PBY keys than 

the common PBY key of the window functions involved so that 

the NDV of the distribution keys is equal to or greater than the 

desired DOP. With “window pushdown” approach, we push the 

window computation down to the underlying data flow operation 

(DFO). In both approaches, a second stage is needed to 

consolidate the local results from various parallel processes. A 

new operator called “Window Consolidator”, Figures 6 and 7, 

performs this consolidation step.   

The decision of extending data distribution keys or using window 

pushdown is based on the optimizer NDV estimation of the PBY 

keys during query compilation. When none of the PBY key 

combination has sufficient NDV, window pushdown will be 

chosen. Otherwise, we will pick a set of PBY keys that has 

sufficient NDV as the distribution keys. For example, Figure 6 

shows “extended distribution keys” plan for query Q2, assuming 

that PBY key combination (year, quarter) has sufficient NDV for 

a balanced data distribution and scalability. Figure 7 shows the 

window function pushdown plan for the same query Q2.  

Unlike the traditional parallel plan (Figure 5), window function 

computation is not completed in the “window sort” operation. A 

parallel process performing “window sort” only sees a portion of 

the data belonging to a partition and needs to know the results 

from peer parallel processes. In case of “extended distribution 

keys”, window functions at a coarser granularity than the 

distribution keys picked are incomplete. For example, the yearly 

sales reporting aggregate of query Q2 will not be completed in the 

“window sort” operation of Figure 6. The “window consolidator” 

operation finishes computation of such window functions. For the 

“window pushdown” plan, none of the window functions will be 

completed in the window sort stage as parallel processes would be 

working on an arbitrary set of rows. For notational convenience, 

we use the term “to-be-consolidated” window functions to refer to 

the window functions whose results, as computed in the window 

sort operation, are not final. We now describe the consolidation 

phase and then show how we handle optimizer misestimates of the 

NDV. 

4.1.1 Window Consolidation 
Parallel processes that perform “window sort” would first 

broadcast the local results of the “to-be-consolidated” window 

functions to the parallel processes performing the “window 

consolidator”. Note that this broadcasted data is expected to be 

small, as these “to-be-consolidated” window functions must have 

low NDV estimates on their PBY keys. Otherwise, their PBY 

keys would have been chosen to be the extended data re-

distribution keys. After they are done with broadcasting, the 

window sort processes would randomly distribute the actual data 

and the results of the window functions “completely” processed in 

that stage. Observe this “hybrid” distribution method between 

window sort and window consolidator in Figures 6 and 7.  

At the consuming DFO, each window consolidator process 

aggregates the partial results it has received via the broadcast, and 

builds a hash table on the PBY key values. Then the rows that are 

received via random distribution are probed in the hash table to 

get the fully aggregated values for the “to-be-consolidated” 

 

          hash  on          common PBY key [year] 

Table Scan (f) 

Window Sort 

 

hybrid  distribution 

           hash on                extended keys  
                                       [year, quarter] 

 

Window Consolidator 

Window Sort 

Table Scan (f) 

   

Window Sort   

  
Table Scan (f)     

               h ybrid                   data   
                                         redistribution   

Window Consolidator   

Figure 6. Parallelization on Extended Keys 

Figure 5. Parallelization on Common PBY Keys 

Figure 7. Parallelization with Window Pushdown 
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window functions. Rows are marked with a special bit indicating 

whether they are “broadcast” or “randomly” distributed. For lack 

of space, we skipped some finer details such as synchronization 

among parallel processes and buffering of rows. Note that the 

window consolidator has an extra O(n) lookup operation and in 

case of “extended distribution keys”, there is an extra data 

distribution cost. These additional costs are insignificant and 

worth spending, considering the massive scalability achieved. 

4.1.2 Example 
 Consider the query Q2 executed on a system with a desired DOP 

of 20, with the optimizer estimates NDV(y)=5, NDV(y,q)=20, and 

NDV(y,q,m)=60. Since NDV(y,q) is equal to the desired DOP, we 

pick (y,q) for data distribution. This plan is shown in Figure 6 and 

the “to-be-consolidated” window function in this case would be 

yearly sales “SUM(sales) OVER (PBY y)”. There will be 20 

parallel processes executing the window sort operation – they will 

sort input data on (y, q, m), compute and broadcast yearly sales to 

the next set of parallel processes performing window 

consolidation, and randomly distribute input data along with 

completed window functions (quarterly and monthly sales) to 

consolidator processes. For simpler illustration, we describe the 

example using only two parallel processes. 

Parallel Process 1  Parallel Process 2 

[WINDOW SORT]  [WINDOW SORT] 

           

Y Q M D S  Y Q M D S 

2001 Q1 Jan 1 10  2001 Q1 Jan 3 20 

2001 Q1 Feb 8 20  2001 Q2 Apr 20 100 

2001 Q2 Apr 15 10  2001 Q2 May 25 35 

2001 Q2 Jun 5 8  2001 Q3 Jul 30 8 

2001 Q3 Jul 3 2  2001 Q4 Nov 8 20 

2001 Q3 Aug 6 20  2001 Q4 Dec 9 20 

2001 Q3 Sep 1 5  2002 Q1 Jan 5 50 

2001 Q4 Nov 10 10  2002 Q1 Mar 20 30 

2002 Q1 Mar 25 30  2002 Q2 Apr 5 30 

2002 Q2 Apr 15 20  2002 Q2 Jun 10 25 

2002 Q2 May 20 15  2002 Q3 Jul 30 25 

2002 Q3 Aug 18 45  2002 Q3 Sep 5 35 

2002 Q3 Sep 25 35  2002 Q4 Nov 15 25 

2002 Q4 Nov 18 20  2002 Q4 Nov 18 10 

2002 Q4 Dec 25 100  2002 Q4 Dec 25 200 

 

This figure shows the sample data received and sorted by the two 

parallel processes performing the window sort. Here, each parallel 

process sees two partitions for the “year” column. For parallel 

process 1, partially aggregated yearly sales values for partitions 

“2001” and “2002” are 85 and 265 respectively. Corresponding 

yearly sales values for parallel process 2 are 203 and 430. This 

data gets broadcast to the window consolidator processes. 

The window consolidator processes first aggregate the results of 

“to-be-consolidated” window functions. In the example, the fully 

aggregated value for partition “2001” is 288 and the fully 

aggregated value for partition “2002” is 695. These values are 

kept in a hash table based on the PBY key “year”. Next, the 

window consolidators probe the incoming regular (non-

broadcasted) rows in the hash table to get the final yearly sales. 

4.1.3 Handling Optimizer Errors 
As stated earlier, the NDV of PBY keys is calculated by the query 

optimizer and is used in picking the parallelization model. 

Inaccurate statistics pose a serious performance problem. When 

NDV is underestimated, we will end up broadcasting too many 

“to-be-consolidated” rows to the window consolidator stage and 

perform poorly. This may even introduce performance regression 

compared to the traditional plan of Figure 5. In order to 

accommodate optimizer’s NDV misestimates, we made the new 

parallel execution plans adapt at query execution time. In 

particular, the window sort operations compute/monitor the NDV 

of PBY keys of the “to-be-consolidated” window functions. As 

soon as they discover that the NDV is higher than anticipated, 

they inform the query coordinator (QC) of their finding. QC then 

adapts the plan to the traditional parallel plan (Figure 5) by setting 

the distribution keys to be the common PBY keys. It asks the 

window sort processes to become pass-through operation, and 

informs window consolidators to perform the entire window 

function computation. In response, the window sort processes 

would distribute whatever rows they have processed/buffered thus 

far and become pass-through operations. The consolidators would 

act as “window sort” and compute all the window functions.  

As a future work, we want to make window function 

parallelization completely immune to optimizer errors (over and 

under estimations). We propose an “always window pushdown” 

parallel execution plan that would be similar to scalable and 

adaptive rollup computation of Section 3. In particular, we will 

monitor the NDV of PBY keys and pick the set of PBY keys that 

give us good scalability and with less broadcasting overhead. 

Once data distribution keys are decided, window sort and window 

consolidator operations will be adapted accordingly. Though this 

plan is truly scalable and adaptable, it may end up 

sorting/buffering and spilling to disk twice i.e., at window sort 

and window consolidator. We plan to investigate further and 

implement this “always window pushdown” parallel plan. 

4.2 Ranking and Cumulative Functions 
In this section, we describe scalable execution models for ranking 

and cumulative window functions. Consider the following query 

computing rank and cumulative sum total. The window functions 

have the same PBY key, but have different OBY keys:  

Q3 SELECT prod_id, date, sales, 
     SUM(sales) OVER (PBY prod_id OBY date),  
     RANK() OVER (PBY prod_id OBY sales)    
   FROM fact f; 

When parallelizing multiple window functions in the query block, 

Oracle query optimizer currently makes a heuristic decision of 

combining/clumping multiple window sort operations that have 

common PBY keys into the same DFO. Data is distributed on the 

common PBY key and each parallel process will execute the 

window sort operations independent of the others. As shown in 

Figure 8, the parallel plan for query Q3 uses distribution on the 

PBY key prod_id. The “window sort (s)” operation computes the 

cumulative total and requires ordering on (prod_id, date). The 

rank function is computed by the “window sort (r)” operation and 

requires data to be sorted on (prod_id, sales). The clumping 

Table 1. Sample Data for Reporting Aggregates 
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optimization that combined window sort (s) and window sort (r) 

in the same DFO reduces the number of data redistribution steps. 

It works well when the number of partitions created by PBY keys 

is equal to or greater than the DOP. Otherwise, this plan has 

severe scalability limitation.  

Our new strategy to massively scale ranking and cumulative 

window functions extends data distribution keys to include some 

or all OBY keys, and can further include a random number such 

that the number of partitions is equal to or greater than the DOP. 

We use optimizer estimates of the NDV of PBY and OBY keys in 

deciding the distribution keys. If the NDV of PBY key is less than 

the desired DOP, we successively add OBY keys of the window 

function till the NDV exceeds the DOP. Even if including all 

OBY keys does not meet the DOP threshold, we include a random 

number in the distribution keys. 

Unlike reporting aggregates, ranking and cumulative window 

functions require rows to be sorted within each partition. So when 

additional keys are used for data distribution and multiple parallel 

processes do the computation of a partition, range distribution 

needs to be employed. For the example query Q3, assuming 

NDV(prod_id, date) and NDV(prod_id, sales) is greater than the 

DOP, we will have a parallel execution plan like Figure 9. 

Observe that as a result of including OBY keys for data 

distribution, we introduced data redistribution from window sort 

(s) to window sort (r). 

The parallel execution model with range distribution operates in 

two phases interspersed with a synchronization step. Assuming 

that the data is range distributed among parallel processes p1 to pn 

in that sequence, a parallel process pi needs to know about the 

data processed by parallel processes pj, j<i that have the same 

partition as the first partition of pi. This is to correctly compute 

the window function results. When random number is used for 

distribution, process pi may need information about processes pk, 

k>i that have same partition as the last partition of pi.  

In the first phase, each parallel process computes the local 

window function results for the first row of the first partition and 

the last row of the last partition. They then send these results, the 

corresponding PBY key values, and if required, the OBY key 

values to the query coordinator (QC). OBY key values are 

required when a random number is included in the distribution 

keys as rows with the same PBY and OBY key values can end up 

at different parallel processes, but the window computation ought 

to treat these rows alike and produce the same result.  

Based on the type of window functions being computed, the QC 

consolidates the information it receives from various window sort 

operations. The QC then sends the relevant information to the 

participating parallel processes so that they can produce correct 

final results. This information includes offsets or replacements to 

be used by the respective parallel processes for computing the 

final results. For data partitions that get allocated/distributed in 

entirety to one parallel process, window computation does not 

need consolidation. These are the partitions that are not the first 

and last data partitions within a window sort. 

4.2.1 Example 

Parallel Process 1  Parallel Process 2 

[WINDOW SORT]  [WINDOW SORT] 

       

prod_id date sales  prod_id date sales 

P1 D1 10  P1 D4 10 

P1 D1 20  P1 D5 25 

P1 D2 10  P1 D5 15 

P1 D2 20  P2 D1 20 

P1 D3 15  P2 D2 10 

P1 D3 25  P2 D2 20 

       

Parallel Process 3  Parallel Process 4 

[WINDOW SORT]  [WINDOW SORT] 

       

prod_id date sales  prod_id date sales 

P2 D3 10  P2 D7 10 

P2 D3 20  P2 D8 20 

P2 D3 10  P2 D9 10 

P2 D4 20  P2 D9 20 

P2 D5 15  P2 D10 15 

P2 D6 25  P2 D12 25 

 

Assume that query Q3 is executed with a DOP of 4 using the 

parallel plan of Figure 9. To save space, we only show how to 

compute “SUM(sales) OVER (PBY prod_id OBY date”. Table 2 

shows the data sorted on PBY and OBY keys by each of the four 

parallel processes performing the window sort. 

Table 2. Sample Data for Cumulative 

  

     hash  on            PBY keys   

                                  [prod_id]   

Table Scan  (f)   

Window Sort (r)   

  
Window Sort (s)   

Figure 8. Clumped Plan on Common PBY Keys 

Figure 9. Range Parallelization on Extended Keys  

  

          r ange    on               [prod_id, sales]   

          r ange on              [prod_id, date]   

Table Scan  (f)   

Window Sort (s)   

Window Sort  (r)   

1108



 

 

Each parallel process computes the local cumulative sum for the 

first row of the first partition and the last row of the last partition. 

For parallel process 1, there is only one partition “P1”. It 

produces the result “P1, 10” for the first row and “P1, 100” for 

the last row. Process 2 sees two partitions “P1” and “P2”, and 

produces local results “P1, 10” and “P2, 50". Parallel process 3 

sees only one partition “P2” and produces the results “P2, 10” and 

“P2, 100". Similarly, process 4 produces local results “P2, 10” 

and “P2, 100". All these local results are sent to the QC. The QC 

consolidates and sends the following information to each of the 

parallel processes. 

Parallel 

Process 

Information from QC 

 

Process1 no “offset”  

Process2 

Use 100 as “offset” for rows in first 

partition “P1”  

Process3 

Use 050 as “offset” for rows in first 

partition “P2”  

Process4 

Use 150 as “offset” for rows in first 

partition “P2”  

 

The information in Table 3 is deciphered like this: there is no 

“offset” for process 1, so its local results are final. For process 2, 

the offset is 100 for partition “P1”. This is because cumulative 

sum from process 1 for partition “P1” is 100. So process 2 adds 

100 to the local results for partition “P1” to produce correct 

result. It also produces local results for partition “P2”. The 

process 3 needs to offset the local result for partition “P2” by 50, 

the cumulative sum of partition “P2” in process 2. Likewise, 

process 4 offsets local results by 150 (50 from process 2 and 100 

from process 3). 

With the techniques described in this section, window function 

computation can scale massively. We got a whopping 20x 

improvement in our performance results (see Section 8). 

5. ADAPTIVE DISTRIBUTION METHODS 

FOR JOINS 
Parallel execution plans for an equi-join between two non-

partitioned tables involve data distribution on one or both tables 

involved. We assume hash joins in this discussion as they are 

most commonly used, but the discussion is applicable to merge 

join as well. Consider the following query for which the optimizer 

picks hash join: 

Q4 SELECT t.year, t.quarter, f.sales 
    FROM time_dim t, fact f 
    WHERE t.time_key = f.time_key;     

Different data distribution methods are possible for the parallel 

plan of this hash join. One approach is hash-hash distribution 

(Figure 10) in which both tables are distributed by hash on the 

join key. This works well when the inputs are large. Another 

approach is broadcast or broadcast-random distribution, in which 

the smaller table is broadcast to the parallel processes performing 

join and the larger table is either randomly distributed or accessed 

in chunks. Broadcast plan, as shown in Figure 11, is ideal when 

the left input of the join is small. Query optimizer uses cardinality 

estimates and makes a cost-based decision in choosing the 

distribution method. It is not uncommon to have the query 

optimizer make gross over or under estimation of the cardinality 

of join inputs, and this can result in severe scalability issues. If 

hash-hash distribution is picked due to overestimation, it can 

happen that only a few parallel processes would end up doing 

most of the join execution. With underestimation of the input, 

broadcast distribution would get picked and can be catastrophic 

due to huge data transmission and CPU overheads.  

With systems that can support massive parallelism becoming a 

necessity with big data, what is needed is a distribution method 

that adapts at query execution time based on the cardinality of the 

real data. So we have extended our hash-hash distribution to be 

“adaptive” – become “broadcast-random” when the left input is 

small, otherwise stay as “hash-hash”. We call this “hybrid hash-

hash” distribution method. It is shown in Figure 12. 

As can be observed, there is a new operator, called “statistics 

collector”, in the query tree. This operator buffers rows and aids 

in selecting the distribution method at runtime. For hash-hash, we 

let the statistics collector operator to buffer at most 2*DOP rows. 

Upon reaching this threshold or seeing end-of-input, it informs 

the query coordinator (QC) of the local cardinality. The QC 

aggregates the information sent by all the parallel processes and 

chooses the distribution method. If the left input cardinality is less 

than 2*DOP, the data distribution for the left input is set as 

“broadcast” and the right input is distributed randomly. 

Otherwise, “hash-hash” distribution on join keys is used. Once 

the distribution decision is made, the statistics collector becomes a 

pass-through operator. With this adaptive hash-hash distribution, 

we can massively scale joins irrespective of the accuracy of the 

optimizer’s estimates. Our performance results (Section 8) show 

impressive gains from this method. 

Figure 12. Adaptive Distribution Plan 

Figure 10. Hash-Hash Distribution Plan 

Figure 11. Broadcast Plan  

Table 3. Consolidation Information 

 Hash Join 

Table Scan (t) Table Scan (f) 

hash hash  

 

Table Scan (t) 

Hash Join 

‘ 

Table Scan (f) 

 

broadcast 

 Hash Join 

Statistics Collector 
 

Table Scan (t) 

Table Scan (f) 

hybrid-hash hybrid-hash 
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The hash-hash distribution method is naturally suited to adaptive 

behavior as the left and the right inputs of the join are in separate 

DFOs. Broadcast plans pose a difficulty as the right input is in the 

same DFO as the join. So if this plan were to be adaptive and 

become hash-hash when the left input is large, we would have to 

change the shape of the query tree at execution time. This is quite 

involved and we might consider it in the future. Note that when 

we place the hash join and its inputs in separate DFOs, we would 

have to buffer the output of join owing to our producer-consumer1 

model. This buffering can hinder performance if it were to spill to 

disk. So, we make a conservative choice of picking “hybrid hash-

hash” distribution method for cases in which the optimizer is not 

confident about the statistics and choosing broadcast distribution 

method might result in a bad plan. In other words, we made our 

traditional “hash-hash” plans “hybrid hash-hash”. In the next 

section, we describe improvements to the broadcast plans. 

6. SMALL TABLE REPLICATION 
As mentioned in Section 5, broadcast distribution is ideal for 

smaller inputs as it does not have to distribute the right input and 

is also resilient to skew. When there is skew, broadcast plan 

results in better CPU utilization and massive scalability.  

Broadcast plans are quite common in data warehousing workloads 

– a bigger fact table is joined with one or more small dimension 

tables (e.g., time, geography). Consider this query on star schema:  

Q5 SELECT country, year, SUM(sales)  
   FROM fact f, time_dim t, geog_dim g  
   WHERE f.time_key = t.time_key AND  
         f.geog_key = g.geog_key 
   GROUP BY country, year; 

Parallel execution plan for this query follows the model in Figure 

11 and would broadcast the small dimension tables, time_dim and 

geog_dim. The cost of broadcasting is proportional to the number 

of rows being distributed and the degree of parallelism (DOP). 

With massive DOP, broadcasting small tables can consume 

significant network and CPU resources. This can be improved 

with a new parallelization model called “small table replication”. 

A table is a candidate for small table replication if it can be 

cached in the buffer pool of a database instance. Scans of such 

tables would be serviced from the database buffer cache instead of 

expensive disk reads and hence, scanning done by multiple 

parallel processes should have negligible cost. The name 

replication comes from the fact that these small tables get 

replicated in the buffer pools of multiple database instances. Once 

these small tables are brought in the database buffer pool/cache, 

they will stay there because of their high frequency of usage. This 

feature goes extremely well with in-memory parallel query 

execution where caching of the database objects is maximized. 

With small table replication, scan of the small table and the 

subsequent join operation get combined into a single DFO. Figure 

13 shows parallel plan with small table replication. This plan has 

several benefits – first, there is no data distribution cost. For 

multi-instance database clusters in which data distribution 

happens on a network, this saving is significant. Secondly, there 

will be a reduction in parallel query startup and teardown costs, as 

only one set of parallel processes is sufficient to execute the 

                                                                 
1 Consuming parallel processes cannot produce rows and have to 

buffer results till they become producers.  

statement. Finally, the unused set of parallel processes is available 

to other concurrent database statements.  

7. HANDLING SERIALIZATION POINT 
In Oracle parallel execution plans, serialization points can exist 

due to the presence of operators (e.g. top-N) that are inherently 

serial. Obviously, having a serialization point is not good for 

massive parallelism. Firstly, any serialization point is executed on 

the query coordinator (QC) process. This would block the QC 

from performing its usual tasks of coordinating the query 

execution among parallel processes. Secondly, any single-input 

operator (e.g. group-by) above the serialization point also 

becomes serial, and any multiple-input operator (e.g. join) 

becomes serial if all its inputs are serial.  

Two new features, Back-To-Parallel and Single-Server DFO, are 

introduced to handle serialization points. The Back-To-Parallel 

feature brings an operator back to parallelism after a serialization 

point. Single-Server DFO feature places the serialization point on 

a parallel process instead of on the QC, thereby letting the QC do 

important tasks. 

Figure 13. Small Table Replication Plan 

Figure 14. Back-to-Parallel Plan 
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Consider the following top-N query containing an inherently 

serial rownum predicate. Figure 14 shows the plan for this query, 

with original plan on the left and the new plan on the right side.  

Q6 SELECT time_key, sum(sales) 
    FROM (SELECT * FROM fact ORDER BY sales) 

    WHERE rownum < 100000 

    GROUP BY time_key; 

In the original plan, the DFO containing the serialized rownum is 

executed on the QC and is tagged as serial QC-DFO. Observe 

rownum pushdown parallelism and that the serial rownum is 

needed to produce the correct result. The GBY operator above the 

serial rownum is serial as well. In the new plan, the GBY operator 

goes back to parallel and the serial rownum is executed on a 

single parallel process instead of the QC. Back-To-Parallel feature 

is always applied as long as the operator above the serialization 

point has a calculated DOP that is greater than 1. Single-Server 

DFO feature is applied whenever the operators in a serial DFO 

can be executed on a parallel process.  

8. PERFORMANCE STUDY 
Performance experiments were conducted on a 2-node Oracle 

RAC database, with each node having 40 2.26GHz dual-core 

CPUs and 200GB of memory. This system supports a degree of 

parallelism (DOP) of 160. To evaluate the effectiveness of our 

parallelization techniques in adapting to data reduction ratios and 

skew, and in scaling the computation beyond the traditional 

parallelization, we had to use synthetic datasets. Some of these 

synthetic datasets are derived from our customer datasets. We 

varied the data reduction (due to GBY) ratios, skew and the NDV 

of distribution keys in the experiments. Statistics were gathered on 

all the tables involved. Due to the criticality of GBY operation, 

we validated our new GBY parallelization on the 3TB TPC-H.  

8.1 Group-By 
We took a GBY query with 50 aggregates (min, max, count, avg, 

and stddev on each of the 10 columns) and measured the query 

performance, varying the input size (16, 64, and 256 million 

rows) and the GBY reduction ratio (low i.e. unique data and 

high). Due to the high overhead of processing the aggregates, this 

query is least favorable to group-by pushdown in the low 

reduction scenario. We chose it to see how much the performance 

might regress in choosing hybrid batch flushing. When GPD 

becomes adaptive and enters the pass-through mode, it needs to 

marshal the aggregate operator’s result to be like a partially 

aggregated value, and the higher the number of aggregates, the 

greater the number of CPU cycles spent in marshalling.  

In the results shown in Figures 15 and 16, we use labels CB_GPD 

and HBF for the existing cost-based group-by pushdown scheme 

and the new hybrid batch-flushing scheme respectively. With 

unique data and accurate statistics (Figure 15), query optimizer 

decision of not choosing group-by pushdown is ideal. As can be 

observed, HBF performed on par with CB_GPD (a non-pushdown 

plan) by adapting itself at runtime to a plan that is effectively a 

non-pushdown plan. The slight improvement can be ignored as a 

run-to-run variation. 

Next, we introduced skew in the data – about 75% of the rows 

have same value for GBY keys and rest of them are unique. In this 

case, Oracle query optimizer incorrectly picked the non-pushdown 

plan i.e. CB_GPD is a non-pushdown plan. With CB_GPD, 75% 

of rows are processed by one parallel process. In contrast, HBF 

handled skew and gave 2x improvement (Figure 16). HBF 

performed as expected in other experimental variations as well.  

We then tested HBF on query q18 (that groups lineitem table by 

orderkey) of TPC-H [5]. For this query, pushdown will not be 

beneficial due to low reduction (about 4 lineitems per order) and 

can even lead to performance regression. Our HBF technique 

adapted at runtime as designed and there was no perceptible 

degradation in q18 performance.  

8.2 Rollup 
To test our ROLLUP parallelization strategy, we took a query 

with shape similar to Q1 and varied the GBY reduction ratio and 

the NDV of non-rollup keys (country for Q1). Table 4 

summarizes these results – it gives the elapsed times when the 

NDV of non-rollup keys is greater/lesser than the DOP, and for 

the high (90%) and low (1%) reduction scenarios. 

Reduction NDV>>DOP Static Adaptive Benefit 

Yes 89 102 0.9x Low  
(1%) 

No 1663 119 14x 

Yes 27 23 1.2x High  
(90%) 

No 646 26 24.8x 

Unlike the “static” parallelization model that distributes work 

based on non-rollup keys, our new “adaptive” parallelization 

model picks the right set of distribution keys at runtime and scales 

well. When the NDV of non-rollup keys is lower than the DOP, 

the “static” plan used only a few parallel processes, while the 

Figure 16. GBY Performance – Skewed Data 
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“adaptive” plan uses all CPU resources and ran significantly 

faster (up to 25x). As expected, there was no difference in 

performance when NDV is higher than the DOP. Elapsed times 

for the low reduction case are high due to GBY spilling to disk. 

8.3 Window Functions 
In the first experiment, we took a query like Q2 and varied the 

number of rows in the table from 16 to 1024 million. The NDV of 

the common PBY key (“y” in Q2) is a mere 2 and the naïve 

parallelization scheme (tagged “common-pby”) could only use 2 

parallel processes. In contrast, our adaptive method (tagged 

“adaptive”) finds at query execution time that the NDV is low and 

pushes the computation of all the window functions to 160 

parallel processes. Results, as shown in Figure 17, demonstrate 

that “adaptive” parallelization improved the performance by a 

whopping 20x for 64m and 256m row cases. One would expect an 

improvement of 80x with “adaptive” as it ran with a DOP of 160. 

Mimicking our customers’ usage of window functions for 

complex analysis, we used “create table as select” statement in 

our scalability experiments. Hence, the improvement is only 20x 

as the costs of table scan and load into a destination table are 

included. In addition, the “adaptive” plan incurs an extra cost of 

performing hash lookup to produce the final results. The benefit is 

lower for 16m and 1024m row cases as the data was fitting in-

memory in the former case and was spilling to disk in the latter.  

Figure 17 also shows the performance comparison when the NDV 

of common PBY key is greater than the DOP. This result is inline 

with our expectation – that there will be a small (negligible for 

large datasets) penalty with “adaptive” algorithm due to NDV 

counting and the code overheads. 

Next we compared the two alternatives – extended distribution 

keys (Figure 6) and pushdown (Figure 7), with the current 

common PBY-based parallelization of the reporting aggregates. 

For the 256m rows input, we took the best case for PBY 

parallelization where in the PBY key has NDV much higher than 

the DOP and forced our runtime window function parallelization 

algorithm to pick different distribution keys. The results and 

explanation is tabulated in Table 5. For the “default” case, 

parallelization based on common PBY key is ideal. When we 

force the distribution keys to be 2, 3, or 4, performance suffers 

due to extra data distribution and code overheads. The 

“pushdown” case finds that the NDV of common PBY key is 

greater than the DOP and adapts to the “default” case.  

Distribution Keys Elapsed Time Explanation 

default (1) 36 best-case 

2 52 

3 53 

4 44 

extra data 
distribution 

 

pushdown 36 adapts to default 

In the final experiment, we compared the PBY key based 

parallelization of ranking and cumulative window functions with 

the new parallelization scheme that uses extended keys. We took a 

query (like Q3) with rank, dense_rank and cumulative sum 

functions having the same PBY keys, but different orderings 

(ok1), (ok1, ok2), and (ok1, ok2, ok3). Figure 18 shows the results 

for low and high NDV PBY keys. For the low NDV case, the 

current parallelization (tagged “pby”) could use only few (4 in this 

case) parallel processes. Our new parallelization scheme (tagged 

“extended keys”) uses PBY and OBY keys for distribution, and 

achieves better scalability; it gives up to 10x improvement. When 

the NDV of PBY keys is greater than the DOP, “extended keys” 

scheme incurs tiny overhead due to NDV counting. 

8.4 Adaptive Distribution Methods for Joins 
We conducted a study comparing ADDM plan (Figure 12) with 

the traditional hash-hash plan (Figure 10). We took the scenario 

in which the optimizer incorrectly picks the hash-hash plan.  

Figure 18. Ranking & Cumulative Performance 

Table 5. Reporting Aggregates Performance 
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Both tables have two distinct key values, with time_dim having 

just two rows and fact having millions of rows. ADDM broadcasts 

time_dim and distributes fact in a round robin fashion, thereby 

using all the 160 parallel processes for the join. The hash-hash 

plan could only use 2 parallel processes for the join. Results as 

shown in Table 6 show dramatic improvement and could have 

been 80x, if not for the constant costs (parallel query 

startup/teardown). 

8.5 Small Table Replication 
Our experiments comparing small table replication (Figure 13) 

with broadcast (Figure 11) yielded expected results. We used 

query Q5 with 1M row table T1 and a DOP of 160. Once T1 is 

cached, small table replication was 8x faster in handling T1 than 

scanning and broadcasting the table T1 to hash join.  

9. RELATED WORK 
Recent years have seen some published research work related to 

SQL window functions – [9][1] use window functions in query 

optimization, [10] addresses the performance of a set of window 

functions in a query but doesn’t touch upon massive scalability; 

[1] describes ways to parallelize window functions with zero or 

low cardinality PBY keys and is a precursor to the elaborate, 

scalable and adaptive parallelization schemes of this paper. A 

novel way of handling of skew in the context of joins was 

presented in [11], but no prior work has attempted skew handling 

for window functions. Some of our window parallelization 

techniques can be extended to handle skew – much like our 

“extended distribution key” method, a skewed partition can be 

distributed to multiple parallel processes, with the query 

coordinator consolidating the local results. 

Research on cache-friendly hash joins [12] and the performance 

analysis of our hash algorithms (joins and aggregation) motivated 

us to use hash tables that are cache resident. In [13], the authors 

propose sharing of the hash table by the parallel processes 

performing group-by, and being orthogonal, that strategy can be 

employed along with our hybrid batch flushing. Hive [8] employs 

“map-join” optimization that is similar to our small table 

replication method. Unlike [8], we do not require any pre-

processing (map-reduce local task) for small table replication. In 

the steady state, Oracle RDBMS would have small tables cached 

in the buffer cache. Small table replication benefits us by picking 

higher parallelism for the query, or makes parallel resources 

available to other queries in the system. 

10. CONCLUSION 
Joins, aggregations, and analytics are the key operations used to 

analyze the already huge, and fast-growing datasets residing in 

traditional databases or in hadoop-based distributed systems. 

Scalable and adaptive evaluation of these operations is of 

paramount importance to the success of any data management 

system. To that end, we developed several techniques for massive 

scalability of SQL operations in the Oracle RDBMS. We believe 

these techniques would be quite applicable to analyses using 

hadoop map-reduce jobs. 

Our parallelization schemes are not only scalable, but adaptable – 

ADDM chooses a distribution method for joins based on the real 

input size rather than the optimizer estimate; group-by pushdown 

with hybrid batch flushing adapts based on the data reduction 

observed during execution; ROLLUP and window function 

parallelization models choose work distribution based on data 

demographics. Performance studies on datasets and database 

statements similar to what we have seen from customers have 

yielded exciting results – up to 30x improvement to elapsed times. 
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fact size Hash-Hash ADDM Improvement 

16m 1.32 0.06 22x 

64m 5.37 0.15 36x 

256m 20.74 0.45 46x 

Table 6. ADDM Performance 
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